Potential use of Sargassum species: an overview

Dr. Bidyut Mohapatra

Department of Biological and Chemical Sciences

E-mail: bidyut.mohapatra@cavehill.uwi.edu

THE UNIVERSITY OF THE WEST INDIES CAVE HILL CAMPUS

Outline

- Classification of *Sargassum* species
- Potential use of Sargassum species
 - Nutraceuticals
 - Pharmaceuticals
 - Wastewater treatment
- Metagenomics: a tool to unlock the *full* industrial potential of *Sargassum* species
 - Biofuels
 - Novel enzymes and value-added products

Sargassum species classification

- **1. Domain: Eukaryota (contains a nucleus)**
- 2. Phylum: Ochrophyta
- 3. Class: Phaeophyceae (Brown algae)
- 4. Order: Fucales
- 5. Family: Sargassaceae
- 6. Genus: Sargassum
- 7. Species: 160 species are known to date (2 are pelagic)
 Six species are native to North Atlantic

0.01 (substitutions per nucleotide position)

¹Phylogenetic tree based on the divergence of internal transcribed spacer (ITS)-2 genetic region

- Nutraceutical or functional food is "any food or food ingredient that may provide a health benefit"
- Benthic *Sargassum* species elsewhere have been consumed as nutraceuticals due to the presence of
 - PUFA (polyunsaturated fatty acids)
 - Dietary fiber, vitamins
 - Alginate, fucoidan
 - Other bioactive compounds
- S. fusiforme (Hijiki)
- S. fulvellum (Hondawara)

¹ Kim, S. (2013) Marine Nutraceuticals: Prospect and Perspectives. CRC Press, Boca Raton, FL.

¹ Amelio, F. (1999). Botanicals: a Phytocosmetic Desk.
CRC Press, Boca Raton, FL.
²Ginneken, V. *et al.* (2011). Lipids Health Dis. 10, 104.

- *S. natans* and *S. fluitans* contain 7-40% of alginate in the cell wall Alginate content varies with the environmental conditions
- Alginate is an anionic polysaccharide that can chelate divalent and trivalent cations
- Dry biomass of S. *fluitans* has been reported to sequester cadmium and lead¹
- Dry biomass of S. natans has been reported to sequester gold from wastewater²
- Antimicrobial and gel-forming abilities of alginate can be exploited as a green material for membrane technology

 ¹ Fourest, E. & Volesky, B. (1996). Environ. Sci. Technol. 30, 277-282.
 ² Volesky, B. & Kuycak, N. (1988). US Patent No. 4,769,223.

Food - Thickening and gelling agents, FAO/WHO approved

Textile - Substrate for color paste to print fabrics

Animal Feed - Binder and thickening agent for pet, fish feed

Pharmaceuticals - Forms gel in the acidic stomach and protect stomach mucosa

Cosmetics - As a thickener, moisture retainer and retain color of lipstick on lip surface

Welding rods - As a binder of flux (temperature, oxygen and hydrogen)

• *Sargassum* cell wall is composed of four major carbohydrates – Alginate, cellulose, fucoidan and mannitol

- Microbial processing of *Sargassum* biomass into biofuels
 - Biogas [methane and hythane® (methane + hydrogen)]
 - Bioethanol and biobutanol
- Microbial processing mimics the natural process of macroalgal degradation
 - Environmentally friendly
- Majority (99%)¹ of these seawater-tolerant smart microbes do not grow under the standard culture methods used in the laboratory

¹ Pace, N.R. (1997). Science 276:734-40.

- A metagenomics approach, in which all genome sequences from decomposing *Sargassum* biomass are non-selectively cloned into a single library
- This allows the study of genomes from both cultivable and uncultivable microorganisms
 - Accelerate the identification of novel genes with potential industrial applications, including biofuels

Metagenomics schematics

1. Sargassum DNA + Vector (Fosmid)

2. Vector + DNA fragment (40 kb)

3. E. coli cells

7. Smart gene/protein identification

Thank you for your kind attention

Relevant Expertise at UWI – Dept. of Biological and Chemical Sciences (BCS)

- Analytical, Inorganic, Organic, Physical Chemistry
- Biochemistry
- Earth science
- Fishery
- Marine Ecology
- Microbiology
- Plant Biology

Contacts details of Head-BCS:

Dr. Francis Lopez Phone: (246) 417-4323 E-mail: bcs_hod@cavehill.uwi.edu